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Percolation in two-dimensional lattices 
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Abstract. Using a definition of percolation suitable for finite lattices we closely examine 
the percolation of such lattices. By extrapolation we can calculate accurate values for the 
critical density pc and discuss the size dependence of percolation. With the aid of a computer 
we enumerate exactly a certain c!ass of site percolation configurations of finite square 
lattices with up to 81 sites. Rapidly convergent extrapolation procedures allow accurate 
determination of the critical density for percolation of the corresponding infinite lattice. 
We find p, = 0.5898+00008 for the site problem on a square lattice. 

1. Introduction 

No general theory exists for determining the critical parameters for percolation on 
lattices (for a review see Shante and Kirkpatrick 197 1). Theoretical progress has depended 
on accidental symmetries which allow calculations for some special lattices (Fisher 
and Essam 1961) and on numerical methods. In certain two-dimensional cases Sykes 
and Essam (1963, 1964a) have been able to establish a matching property for pairs of 
lattices. With the help of symmetries this approach leads to a few exact solutions for the 
critical density p c .  The most important approximate methods are the series expansion 
method (Sykes and Essam 1964b) which yields results accurate, with moderate effort, 
to a few percent, and the Monte Carlo method (Dean 1963, Frisch et  211961, Vyssotsky 
et al 1961) which yields similar precision. 

In this paper we take a somewhat different approach to the problem. We consider 
site percolation through two-dimensional N x N lattices and we treat them exactly, 
extrapolating to arrive at the infinite-system result (see also Imry and Bergman 1971). 
We say that a finite lattice percolates if there is a path across it from a selected edge to the 
opposite one. In this way most of the matching properties of Sykes and Essam (1963, 
1964a) are trivial. In particular, consider the site problems on the square lattice and the 
square lattice with second neighbours included, to  which cases our actual numerical 
work is limited. If there is a percolating path composed of empty sites in the horizontal 
direction according to the latter rule (percolation via first and second neighbours), 
there can be no percolating path composed of occupied sites in the vertical direction 
according to the former rule (percolation via nearest neighbours only). The converse 
also holds. Therefore, in the N -+ x limit the corresponding critical densities add to 
exactly one. We rely heavily on this property in our calculations. For technical reasons 
the problems we treat exactly are not quite the two site problems on a square lattice 
with first neighbours only and with first- and second-nearest neighbours included. The 
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matrix method we use to go through every configuration of a 9 x 9 lattice cannot keep 
track of percolating channels which include backward steps, snakes as we have dubbed 
them. Therefore the resulting extrapolated results for N -+ cxj do not add to unity 
exactly and the true critical concentration lies in a gap of 04086. Up to this point there 
are no approximations in our work apart from the extrapolation to N -+ cc where the 
convergence is extremely good. We can sharpen our result further, estimating on the 
basis of an explicit count of the snakes in a 5 x 5 lattice and other more circumstantial 
evidence how the gap is to be split between snakes of the first-neighbours-only and the 
first-and-second-neighbour problems respectively. In this way we produce a p c  which 
agrees with previous estimates with an uncertainty reduced by an order of magnitude 
(see also Sykes er al 1973). 

Strictly speaking, it is an act of faith that the infinite-system percolation threshold as 
conventionally defined can be estimated by our method. Our extrapolation is ‘physically 
motivated‘, however, and it provides some physical insights. For example, we determine 
an exponent describing the uncertainty of percolation in finite systems. This exponent 
is shown to be directly related to a true critical exponent, the power of the divergence of 
the correlation length in the vicinity of the critical point. 

I t  should be mentioned that our method is not restricted to the square lattice but can 
be extended to other lattices with different percolation rules. If the problem includes 
snakes the method seems to be limited to matching pairs of two-dimensional lattices. 

The plan of the rest of the paper is as follows. In 9 2 we discuss the determination of 
p c  while in 8 3 we examine the size dependence of the singularity at p c  . Section 4 contains 
a discussion of the numerical procedures. There is finally an appendix on the relationship 
between treatments of the present problem in the ‘microcanonical’ and ‘canonical’ 
ensembles. 

2. Calculation of pE 

We will first address ourselves to the case of the first-nearest neighbours only. A funda- 
mental quantity which we will discuss is P,(p), defined as the probability that a finite 
N x N lattice, chosen from an ensemble oflattices with each site occupied with probability 
p ,  ‘percolates’. ‘Percolation’ for a certain configuration of occupied sites on a finite 
lattice is said to occur if there is a connected path from top to bottom (top and bottom 
being distinguished from the ‘sides’). Thus configurations (a) and (b)  in figure 1 percolate 
but (c)  and (d) do not. This definition is equivalent to the usual definitions in the limit 
of an infinite lattice, but is somewhat arbitrary for a finite lattice. I t  seems, however, 
physically motivated and sensible, and leads in fact to more convergent results than 

. . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  
(0) (b) (C)  W )  

Figure 1. Some configurations on 5 x 5 lattices. Large dots indicate filled sites, small dots, 
empty ones. Configurations (a) and (b) percolate according to our definition; (c) and (d )  
d o  not. 
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some other possible definitions. (A ‘possible’ definition is one which reduces in the 
N -+ 00 limit to the statement that there exists an infinite connected cluster.) 

We have calculated P ,  exactly (subject to the restriction concerning the ‘snakes’ as 
mentioned in the introduction and discussed later in this section) for N = 2,3 , .  . . - 8 ,  
which is sufficient to allow reliable extrapolation to N = CO (see 9 4). 

The function PN(p) has the form shown in figure 2. We plot P, for N = 1,2,3,4,6.  
The limiting form of PN for N * CO is a @-function : 

P A P )  = @(P-P,) ( 1 )  

P 

Figure 2. Percolation probability P,(p)  as a function of p for N x N  square lattices and 
N = 1 , 2  , . . . ,  6. 

where p ,  is the critical percolation density. The behaviour of the P N  immediately 
suggests a number of extrapolation procedures which will yield a sequence p c N  which 
converges to p c ,  for example, the solutions of 

dZP,@)/dp2 = 0 ( 2 )  

p N ( P )  = p .  (3) 

or 

Equation (3) is the result of a scaling approach and, incidentally, gives a surprisingly 
good estimate for the critical density, p c  = 0.62, already at N = 2. 

We tried other schemes as well, more or less rapidly convergent. None could beat, 
however, the most straightforward possible definition for pcN : 

N 2 -  1 

(4) P,N = 1 - N - 2  p iN)  
n =  1 

where pkN) is defined to be the percolating fraction of all configurations with precisely n 
occupied sites. Imagine filling randomly, one by one, the sites of an N x N lattice. 
The lattice will suddenly percolate when some number of sites 4 have been filled; pcN, 
according to definition (4), is the mean oalue of ns/N2. To see this, define the total number 
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of percolating configurations for occupation number n as 

Now the number of random fillings of n - 1 sites which percolate is (n - 1)!kkN> Thus 
of the n!k!,” percolating fillings of n sites, ( N 2  - n +  l)(n- l)!  k:Yl already percolated 
when site n - 1 was filled. Hence 

[ n ! k L N ’ - ( N 2 - n +  l ) (n -  l)!k!,?,]/n! (:*) = P ( ~ ) - -  n P n - 1  (6) 

is the fraction of random fillings which percolate exactly when the nth site is filled. 
Therefore, 

( 7 )  p c ~  = N - 2  1 n(piN)-pkN>l) 
0 

and equation (4) follows from a summation by parts. 
Prescription (4) is rapidly convergent ; our analysis (5 4) indicates that the convergence 

is exponential with p c N - p c r  - e-lN and c1 approximately equal to unity. We find 

The excellence of this last result is illusory, however, because the snakes are not 
included. Precisely defined, a snake is a configuration which includes a backwards 
string of occupied sites essential for percolation. The simplest kind of snake is shown in 
figure 3(a). The configuration in figure 3(b) is not a snake since there is a direct path 
available as well as the snake-like path. Snakes are rare (there are none at all for N < 5 ; 
less than one in lo4 is a snake for N = 5) and make only a small contribution to percola- 
tion except in the very near vicinity of p , .  They are important, however, for an estimate of 
p ,  which claims a precision better than 

p c  ?) = 0.5907 & 04001. 

. . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  
. . . . . .  . . . . . .  

(0 1 (b)  

Figure 3. Configurations on 6 x 6 lattices: (0 )  is a snake: (h). although it has a snaky portion, 
is not. 

The effect of omitting the snakes is that we overestimate p , .  Also the prescription (4) 
gives a sequence of decreasing upper bounds on p c  (reflecting the notion that larger 
systems percolate sooner than small ones). The result quoted above should therefore be 
considered only as an upper limit on p c  which we denote by pc3: . It is difficult to calculate 
directly the contribution of the snakes, but it is easy to generate a sequence of lower 
bounds. This leads us to the problem of first and second neighbours. As mentioned in 
the introduction, in order for a configuration not to percolate according to our definition, 
there must be a connected string of unoccupied sites blocking the way. The ‘connections’ 
between unoccupied sites follow a definite rule, but a different one from the rule for 
occupied sites ; in  the case of the square lattice the complementary rule corresponds to 
percolation between nearest neighbours and second-nearest neighbours. The critical 



Percolation in two-dimensional lattices 687 

percolation density p, for the latter percolation problem is clearly related to p c  by 

p, = I -p , .  

Just as in the original problem, we can calculate P N  and a sequence p c N  which converges 
from above to a value slightly larger (because we again neglect the snake configurations) 
than p,. But because of (8) the sequence i j c N  .- 1 - pcN will bound the critical density for 
the first-neighbour problem from below. 

In order to extrapolate for ijcm we will consider a procedure slightly different from 
equation (4). Equation (4) is the average of the critical proportion of sites that actually 
have to be occupied for percolation to take place in the microcanonical ensemble where 
the number of occupied sites is the relevant variable. One can also look at the problem 
in the canonical ensemble where the probability of occupation of a site is the relevant 
variable. One then gets for p c N  : 

which is strictly equivalent to equation (4) in the limit of large N .  We derive equation (9) 
in the appendix where we discuss the question of ensembles at some length. 

It turns out that the sequence pcN as defined in equation (9) converges faster in the 
case of the first- and second-nearest neighbours than the one defined in equation (4), 
whereas the opposite is true for the first-neighbours-only case (all these sequences are 
given in table 1). On carrying out the indicated calculations we find, extrapolating as 
before from data for N = 2,3, .  . . ,9, that 

(100) 

the precision of the lower limit being +00014. The values of pc9 and p c s  both from 
equation (4) provide less sharp but precisely determined limits : 

( 1 Ob) 

The latter limits are firm since the microcanonical method of determining pcN always 
reflects the fact that large systems percolate easier than small systems (Pike and Seager 
1974). 

Up to this point there is no other approximation in our approach than the extra- 
polation to N -, 00. To improve the estimate for p ,  we will have to evaluate the relative 

0.5821 < p c  < 0.5907, 

0378 < pc  < 0.5908. 

Table 1. Sequences of percolation thresholds pcN for the square lattice according to two 
definitions. The entries PeN are for percolation with connections to first- and second-nearest 
neighbours. 

N 
P E N  P c N  P E N  

(equation 4) (equation 4) (equation 9) (equation 9) NZ+ 1 n = O  

0.666667 0,583333 
0.61 3757 0.497354 
0,599260 0,463287 
0.594002 0.446257 
0.59 1895 0,436546 
0.591061 0.430577 
0.590809 0.426738 

0.424204 

0,533333 0,466667 0.0 
0.552383 0.447619 0.0 
0.564009 0.436035 0000044 
0.571 156 0.429093 0.00025 
0575898 0,424747 0.00065 
0.579240 0.421966 0.00121 
0.58 1 720 0,4201 73 0.001 89 

0.4 1903 1 
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contributions of two different classes of snakes, namely those belonging to the two 
different problems respectively. The true p c  divides the small gap between i j , ,  and pcm . 
For p c  < p < pca and in the limit of large N ,  all percolation is via snakes. This statement 
can be formalized as follows. Define pBti,,(p) for p = n / N 2  as the fraction of all con- 
figurations with n occupied sites which percolate and which are snakes. Then as N -+ cc, 
pL:Ae converges to 

G L e  = e ( P - ~ c ) e ( P c c c  (1  1) 

For finite N ,  pk!Le is a broadened peak centred near p c .  For N less than a few hundred, 
the width of this peak is much greater than pcm - p c ,  in the same way as the pn for small 
N show no abrupt threshold at p c N .  We define similarly p:f&,(p) which is the fraction of 
percolating snakes according to the complementary rule. Remarks analogous to those 
above apply to the function p ~ ~ ~ , , ,  eg for i j C m  < p < p c  all blocking strings of unoccupied 
sites are snakes in the limit N -+ x. The functions pk:Le and pitLe are shown schematically 
in figure 4. 

1.1 

1 * - - - -  

Qcm 

-LNJ 
bmnke 

Pigure 4. Schematic plot of the fractional number of snake configurations as a functlon ofp. 
The bell-shaped curves would correspond to N - 10. The broken curve is the mirror 
image (about p = 0.5) of pIfike. The widths of and pi:/ke are exaggerated as is the 
displacement of the centres of the broken peak and The p axis benchmarks are 
defined in the text. 

There is an essential difference between the snakes that compose the families 
and fijzLe. The simplest snakes of the two families are shown in figure 5 .  'Simplest' 
here means configurations in which the percolation path is as short as possible. If the 
second-nearest neighbours are allowed to interact, as in figure 5(b), the snake configura- 
tion is a great deal simpler than the one seen in figure 5(a). We will call the former type un- 
complicated as compared with the complicated snakes composing the family belonging 
to the first-neighbours-only problem. 
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Figure S. Simplest snake configurations for complementary connection rules. Occupancy 
of the sites within the broken lines must be as shown. Sites outside the broken lines are 
shown occupied in one of a class of equivalent ways. 

The basis of our estimations of how the gap is to be divided between these two 
families of snakes is the assumption that their relative weights (their actual contributions 
to p c  and Fc), 

do not change too dramatically as a function of N after the snakes have made their 
appearances on the scene at N = 4 and N = 5 .  This is analogous with the fact that the 
critical points p c N  and PcN do not change much as functions of N .  Then the ratio y of 
the weights of the two families will be fixed at a relatively early stage in N .  We have two 
different ways of estimating this ratio which one intuitively expects to be heavily in 
favour of the uncomplicated snakes. 

As long as the peaks &Le and are much wider than the gap between qC, and 
pcm and roughly equally wide, one can say that the ratio of the quantities in (12) is 
approximately equal to the ratio of the grand totals of snake configurations in the two 
families, 

and analogously for ij:tk.. This is so as the binary coefficients then will not be very 
different for the two peaks. The necessary conditions are clearly met for N = 5 ,  for 
which we have an explicit count of the snakes, and seem to remain satisfied at least up 
to N = 8. 

Now it is possible for N 5 8 to estimate in a simple way qyLe  and $:Le, and hence y. 
An N x N lattice admits of 2" configurations altogether. To obtain a snake certain sites 
have to be occupied in a particular way as shown in figure 5. Suppose qSLe and ij$ke 
comprise chiefly such simple snakes. The sites shown within the broken lines must be 
occupied as indicated. In figure 5(a) the occupation of 2N +9 sites is specified, which 
reduces the number of snake candidates by a factor 22N+9.  The corresponding factor 
in figure 5(b) is 22Nf6. On this basis alone one would conclude that 

Additionally there must be strings of filled (empty) sites as indicated in figure 5(b) ((a)), 
which can be positioned in a variety of ways (the remaining sites can be occupied or 
not in an arbitrary manner). Consideration of the possibilities shows that y should be 
slightly increased over (14). The multiplicity of positionings of the snake figure is of 
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order N 2 ,  only a pre-exponential factor in (14), which, however, again favours an in- 
creased y. 

What about our assumption that the snakes of figure 5 exhaust q$&, and qLtke? 
First of all, more elaborate snakes require the rigid specification of more sites ; secondly, 
the positional multiplicities of such snakes are smaller; thirdly, by actual count, at least 
the simpler elaborations contribute equally to q y i k e  and ij::ike leaving the ratio un- 
affected. 

The above estimate of y depends crucially upon the smallness of the gap pcDo - i jcm,  
which results in the approximate proportionality of pAtke and pLtLe for small N ,  and 
upon the rapid convergence of the p c N  and P c N .  We may thus extract y from considera- 
tions of the snake population on low-order ( N  6 8) lattices. Only for low-order lattices 
can we enumerate with confidence the contributions of the various types of snake 
configurations. 

Another and independent way of estimating the respective weights of the two 
families of snakes is starting with the explicit count of snakes at  N = 5. There the ratio 
of the relative weights (12) is y = 26 in favour of the uncomplicated type (the ones of the 
first-and-second-neighbour case). In table 1 we also give the sum of the quantities (12) 
(ie the contributions of all snakes) for N = 1 , 2 . .  . 8 .  One can see that the effective share 
of the snakes grows rapidly after N = 4 and its value would be the width of the gap at 
N = CO. The obvious reason for the reduced weight of the snakes for small N is the finite 
size of a snake configuration. There is no room for the uncomplicated type for N < 4 
and the complicated type for N < 5. The rapid growth after N = 4 reflects the relaxing 
of the space problem. There is a phase lag of unity between the uncomplicated and the 
complicated snakes with respect to the increasing room, and one would therefore 
expect the share of the complicated snakes to grow. 

To obtain a quantitative estimate of this we will call C I ~ , ~ +  the ratios of the contribu- 
tions of snakes for two consecutive values of N .  Then a4,5 = 0~00025/0~oooO44 = 5.7 
(table l), a5,6 = 2.6 etc. As at N = 5 still only 1/27 of the snakes are of the complicated 
type, a4,5 mainly describes the growth of the share of the uncomplicated snakes from the 
minimum space of 4 x 4 to 5 x 5 .  In the 5 x 5 lattice the uncomplicated snakes have room 
for expansion in two dimensions, each presumably contributing a factor Ja4,5 com- 
pared with 4 x 4 .  From N = 5 to N = 6 as well, each spatial direction is expected to 
contribute a factor J u ~ , ~ .  The complicated type of snake requires a minimum space 
4 x 5. Thus the growth from the lattice 5 x 5 to 6 x 6 includes one factor Ja5,6 and 
one Ja,,,, the latter describing the growth from the entirely constrained horizontal 
direction in N = 5 to one step of leeway in N = 6, just as was the case of the uncompli- 
cated snakes in both directions from 4 x 4 to 5 x 5 .  The coefficients for going from N = 6 
to N = 7 etc can be constructed analogously leading to the ratio y at N = 00 (remember- 
ing that the a N , N +  tend to unity for large N )  : 

N 11. (15) 
26 - ...  - - a5,6  a6.7 a7.a y = 26 

J a 5 , 6 J a 4 , 5  J a 5 , 6 J a 6 , 7  J % . 7 J a 7 , 8  J a 4 . 5  

Thus both of our estimations roughly agree and we conclude that y - 10 which 
implies that p c  is about ten times closer to p c m  than i j c m .  Taking generously 6 < y < 26 
(26 is the ratio at N = 5 )  and allowing for the stated error limits in p c m  and qC,, we 
arrive at our final result, 
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This value comparzs well with previous estimates: Dean (1963), p c  = 0.580 k0.016; 
Frisch et al(1961), p c  = 0.573+0.017; Sykes and Essam (1964b), p c  = 0.590+0.010. 

We would like to  mention in passing that it is possible, although a yeoman task, to 
count the complicated snakes for N = 6 using a computer to solve partial problems for 
different 'skeleton' snakes. This would be interesting in the light of equation (15) as one 
would then be able to focus p c  even further, not having to allow so wide a range for y. 

3. Size dependence of the singularity at pc 

The ideas discussed in the previous section, and the numerical work, allow certain insights 
into the nature of the singularity in the infinite system at p = p c  . The following discussion 
is for the percolation problem without snakes, ie without backward steps. The influence 
of the snakes would be, if any, to make the system more size dependent. 

How sharp is the percolation threshold in a finite system? The uncertainty of the 
percolation density in the canonical ensemble (see appendix) as a function of N can be 
taken to be 

*N - l/Ph(PcN), (17) 

the inverse slope of P,(p) at the critical point. Writing 0, - N - '  we have 

c = lg Ph(P,)/lg N (18) 

which we expect to approach a limit when N -, CO. Numerically this seems to be so. 
With the use of (18) we obtain c 1 0.67. 

We also looked, although somewhat indirectly, at the size effects in the microcano- 
nical ensemble. We plotted the height of the peak of the function N2(piN)-pL? as a 
function of N and obtained the exponent ii = 0.49. which suggests that the uncertainty 
of percolation in the microcanonical ensemble in terms of the variable n / N 2  behaves like 

N -0 .49 
Oll - 

In view of the analysis in the appendix this is slightly at odds with c 2 0.67 which should 
be equal to Z for large N .  

Given that the snakes can only make the uncertainty even larger, the result for 
c (or ii) seems to us interesting. It says that percolation in finite.systems is rather ill- 
defined. This may be of some importance in practical cases of percolation, particularly 
in biological systems where the number of units may be relatively small. 

We would finally like to mention another aspect of the approach via finite systems. 
Through scaling arguments already referred to in connection with equation (3), or 
more easily with the following method also used by Irmy and Bergman (1971), one can 
show that c is directly related to a real critical exponent describing the divergence of the 
correlation length (average diameter of connected clusters below or disconnected lakes 
above p c N )  at p c N .  I t  is reasonable to assume that the correlation length in a finite system 
will have reached the linear size N of the system at Ip-pcNI - l /PN.  Assuming that the 
correlation length varies as 5 - we get from 0, - l/Ph - N - ' :  

5 - N - ( p - p c ~ 1 - '  - N c " ,  (19) 

ie v = l / c .  
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4. Numerical methods 

The first step in the numerical analysis is to count. for given n and N ,  the number of 
percolating configurations. In the computer calculation it is natural to represent 
occupied sites by 1’s and unoccupied sites by 0’s. Each configuration can be represented 
by a string of N words each with N bits. Fast in-line logical comparison and bit-shifting 
functions can then be used to determine whether or not a given configuration percolates 
according to our rules. 

By directly generating such strings and applying the percolation algorithm one can 
calculate the kj;M’ (see equation ( 5 ) )  for N < 5 .  Since the number of configurations is 
2N2, N = 6 already becomes very expensive however. A modification of the above 
method, in which the configurations are classified according to the percolation of 
substrings of the strings of N words, allowed the counting to proceed to N = 9 at 
modest cost (9 minutes on an IBM-370-165). A further investment was not considered 
worthwhile ; extended results would improve estimates of the exponents somewhat, 
but would add little to our estimate of p c  because of the snake problem discussed above. 

The second aspect of the numerical analysis is the extrapolation procedures for 
determining p c  and the exponents. Fortunately the sequence p c N  obtained from prescrip- 
tion (4) was quite convergent (as was the sequence pcN). Two extrapolation formulae 
were tried : 

and 

The free parameters p c ,  A ,  y or p c ,  B,  c1 were determined by fitting (20) to successive 
triplets of the p c N .  A sequence of values for the parameters, including p c ,  results. If this 
sequence is reasonably constant then the assumed asymptotic form can be said to give a 
reasonable representation of the true asymptotic behaviour. 

Typical results are shown in tables 2 and 3, which summarize fitting the form (20b) 
to the sequences p c N  from equations (4) and (9). The last entry in the pCm column gives a 
good estimate of the true pcm.  This estimate can be further refined by extrapolating the 
sequence of pcm’s, although the numerical data may make this latter procedure either 
unnecessary or unwarranted. 

The sequences p c N  and jcN from both equations (4) and (9) fitted the exponential 
form (20) significantly better than the power law form (20), and the sequences l/r and l/? 

Table 2. Result of fitting the asymptotic form (20b) to successive triplets ofp,, from equation 
(4). 

N F c  m B a 

1 , 2 , 3  0.475000 2.544 1,578 
2 ,3 ,4  0.44093 1 0.907 0.926 
3,4,5 0.429232 0.545 0.693 
4,5,6 0.423662 0.375 0.562 
5,6.7 0.42 1061 0.287 0.487 
6,7,8 0.419816 0.236 0.44 1 
7,8,9 0.419278 0.207 0.4 15 
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I 1 , 

Table 3. Result of fitting the asymptotic form (20b) to successive triplets of PcN from equation 
(9). 

N 

2. 3.4 
3.4.5 
4.5.6 
5.6.7 
6, 7. 8 
7. 8 ,9  

B, 1 

0,418058 
0.4 1 87 1 4 
0.4 1 7473 
0.41 7022 
0.41 6922 
0.41 7022 

B 

0,1314 
0.1 343 
0.1268 
0.1 123 
0.1093 
0.1 160 

0.497 
0.5 12 
0.468 
0.446 
0.439 
0.45 I 

could not be fitted with the power law at all. The two sequences for pc (tables 2 and 3) 
seem to extrapolate to  slightly different values of pcE . One would be inclined to take 
the extrapolated value from table 3, so stunningly good is the exponential fit, were it 
not that the last entry in the sequence for pc does not agree with the monotonically 
decreasing trend. A compromise between tables 2 and 3 is then indicated and we 
estimate pcm = 0.4179 f0.0014, where the error limit contains both the last entry of 
table 2 on the high side and the result of the power law extrapolations to both sequences 
p c N  on the low side. For p c m  we quote pcm = 0.5907 +_O.O001. The central value is from 
the fit to the last triplet ( N  = 6 , 7 , 8 )  of p c N  and the error limit contains both p c s  on the 
high side and the limit of the power law extrapolation on the low side. 

In figure 6 pcN- jcoc  from equation (4) are shown on a log plot as a function of N .  
If the data conform to (20) they should lie on a straight line. 

The same procedure was applied to sequences lic and 1 / ~ .  The sequences of fits for 
1/c and l / z  were decreasing, appearing to lead to 

l / ~  < 1.52 (2 10) 

Figure 6. Log plot of pCn - p , , .  The full curve is a straight line fit to the last three points. 
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and 

l/r  < 1.53. ( 2  1 h)  

No firm lower limits can be established from the numerical data, but the differences 
between successive fits for 1 / ~  and l/r are quite small (less than O~OOO4) and we would 
be surprised if 1 / ~  or 1/z were less than 1.50. 

Note that if snakes did not exist one would have l /t  = l/r. The sequence of fits for 
the exponents Z and 5 were not monotonic because of irregularities induced by the 
truncation of the fractional part of p , N 2 .  Parabolic interpolation smoothed the data 
considerably and we obtained an excellent fit for the height of the peak for N 2 4. 
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Appendix. Relation between ‘microcanonical’ and ‘canonical’ ensembles 

The numerical data, the fractions of configurations pn = /c,,/(~,,’) with n filled sites that 
percolate, are in the microcanonical ensemble, n fixed. We calculate P,(p), the proba- 
bility of percolation in the canonical ensemble, with the aid of the obvious transfor- 
mation 

The inverse transformation is complicated. 
One can now determine p ,  starting from the function P,(p) in the canonical ensemble 

as follows. One says that the distribution of densities at which different ensembles 
percolate is equal to dP,(p)/dp. One then averages for the density at which percolation 
occurs (thus establishing equation (9)) : 

The last step follows since the integral over p of any term in the binomial expansion of 
b+(1-p)lM is equal to ( ~ + 1 ) - ’ .  

Another interesting question concerns the finite size effects in the different ensembles. 
Using (A.1) one can determine the width of the size-dependent region in the canonical 
ensemble, ie in the variable p ,  if the size-dependent region in n for the p,, is given. We 
are interested in the width of the distribution dP,(p)/dp. Starting with (A.l) at large N ,  
replacing the sum over n with an integral over x and differentiating and integrating 
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p ( x )  = pn once with respect to x, 

(A.3) 

The integrated term in the partial integration vanishes because the inner integral in the 
last form vanishes for z = N2, as we will see shortly. For large N the function 

p”(1 - p ) N 2 - ”  
T(N2 + 1 )  

f ( x )  = T(x + 1)T(N2 - x + 1)  

becomes a narrow Gaussian peak centred at p N 2  with crp = NJp(1 - p ) .  ‘Narrow’ is 
to be understood on the scale of N 2 .  We can then substitute the Gaussian in (A.3) and 
we realize that the integrand in the inner integral is essentially the derivative of the 
Gaussian peak with respect to x (and will vanish if integrated over the whole range of 
x as claimed above). We then have 

If now dpJdz, which also is a narrow peaked function on the scale of N2, varies slowly 
on the scale of op the integral in (AS) gives for p = p c  : 

If, however, at the critical number of occupied sites, dp/dz is a rapidly varying function, 
then 

Then (A.6) gives (oN defined in 9 3) 

1 

The factor N2 in equation (A.8) changes the scale so that cr, is the uncertainty of percola- 
tion in the microcanonical ensemble in terms of the varizble n/N2. On the other hand, 
equation (A.7) gives 

( T N  Cc N-’ .  (‘4.9) 

The conclusion is that as long as cr,, vanishes more slowly than N -  ’, oN and cr,, will vary 
identically for large N. If, on the other hand, cr, vanishes more rapidly than N - ’ , a N  
reflects the uncertainty in the number of occupied sites in the canonical ensemble 
rather than the uncertainty of percolation and varies as N - ’ .  The latter case could 
result from supplementary conditions on the occupation of the lattice such as an exclu- 
sion of too large fluctuations in the local density. This kind of condition would reduce 
the uncertainty in percolation stemming from adverse configurations. 
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